Open In App

Compute nCr%p using Fermat Little Theorem

Last Updated : 15 Apr, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given three numbers n, r and p, compute the value of nCr mod p. Here p is a prime number greater than n. Here nCr is Binomial Coefficient.
Example: 

Input:  n = 10, r = 2, p = 13
Output: 6
Explanation: 10C2 is 45 and 45 % 13 is 6.

Input:  n = 6, r = 2, p = 13
Output: 2
Recommended Practice

We have discussed the following methods in previous posts. 
Compute nCr % p | Set 1 (Introduction and Dynamic Programming Solution) 
Compute nCr % p | Set 2 (Lucas Theorem)
In this post, Fermat Theorem-based solution is discussed.
Background: 
Fermat’s little theorem and modular inverse 
Fermat’s little theorem states that if p is a prime number, then for any integer a, the number ap – a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as: 
ap = a (mod p) 
For example, if a = 2 and p = 7, 27 = 128, and 128 – 2 = 7 × 18 is an integer multiple of 7.
If a is not divisible by p, Fermat’s little theorem is equivalent to the statement a p – 1 – 1 is an integer multiple of p, i.e 
ap-1 = 1 (mod p)
If we multiply both sides by a-1, we get. 
ap-2 = a-1 (mod p)
So we can find modular inverse as p-2
Computation: 

We know the formula for  nCr 
nCr = fact(n) / (fact(r) x fact(n-r)) 
Here fact() means factorial.

 nCr % p = (fac[n]* modIverse(fac[r]) % p *
               modIverse(fac[n-r]) % p) % p;
Here modIverse() means modular inverse under
modulo p.

Following is the implementation of the above algorithm. In the following implementation, an array fac[] is used to store all the computed factorial values. 

C++




// A modular inverse based solution to
// compute nCr % p
#include <bits/stdc++.h>
using namespace std;
 
/* Iterative Function to calculate (x^y)%p
in O(log y) */
unsigned long long power(unsigned long long x,
                                  int y, int p)
{
    unsigned long long res = 1; // Initialize result
 
    x = x % p; // Update x if it is more than or
    // equal to p
 
    while (y > 0)
    {
     
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Returns n^(-1) mod p
unsigned long long modInverse(unsigned long long n, 
                                            int p)
{
    return power(n, p - 2, p);
}
 
// Returns nCr % p using Fermat's little
// theorem.
unsigned long long nCrModPFermat(unsigned long long n,
                                 int r, int p)
{
    // If n<r, then nCr should return 0
    if (n < r)
        return 0;
    // Base case
    if (r == 0)
        return 1;
 
    // Fill factorial array so that we
    // can find all factorial of r, n
    // and n-r
    unsigned long long fac[n + 1];
    fac[0] = 1;
    for (int i = 1; i <= n; i++)
        fac[i] = (fac[i - 1] * i) % p;
 
    return (fac[n] * modInverse(fac[r], p) % p
            * modInverse(fac[n - r], p) % p)
           % p;
}
 
// Driver program
int main()
{
    // p must be a prime greater than n.
    int n = 10, r = 2, p = 13;
    cout << "Value of nCr % p is "
         << nCrModPFermat(n, r, p);
    return 0;
}


Java




// A modular inverse based solution to
// compute nCr %
import java.io.*;
 
class GFG {
 
    /* Iterative Function to calculate
    (x^y)%p in O(log y) */
    static int power(int x, int y, int p)
    {
 
        // Initialize result
        int res = 1;
 
        // Update x if it is more than or
        // equal to p
        x = x % p;
 
        while (y > 0) {
 
            // If y is odd, multiply x
            // with result
            if (y % 2 == 1)
                res = (res * x) % p;
 
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
 
        return res;
    }
 
    // Returns n^(-1) mod p
    static int modInverse(int n, int p)
    {
        return power(n, p - 2, p);
    }
 
    // Returns nCr % p using Fermat's
    // little theorem.
    static int nCrModPFermat(int n, int r,
                             int p)
    {
 
          if (n<r)
              return 0;
      // Base case
        if (r == 0)
            return 1;
 
        // Fill factorial array so that we
        // can find all factorial of r, n
        // and n-r
        int[] fac = new int[n + 1];
        fac[0] = 1;
 
        for (int i = 1; i <= n; i++)
            fac[i] = fac[i - 1] * i % p;
 
        return (fac[n] * modInverse(fac[r], p)
                % p * modInverse(fac[n - r], p)
                % p)
            % p;
    }
 
    // Driver program
    public static void main(String[] args)
    {
 
        // p must be a prime greater than n.
        int n = 10, r = 2, p = 13;
        System.out.println("Value of nCr % p is "
                           + nCrModPFermat(n, r, p));
    }
}
 
// This code is contributed by Anuj_67.


Python3




# Python3 program to calculate nCr % p
 
#Python function to calculate nCr % p
def ncr(n, r, p):
    # initialize numerator and denominator
    num = den = 1
    for i in range(r):
        num = (num * (n - i)) % p
        den = (den * (i + 1)) % p
    return (num * pow(den, p - 2, p)) % p
 
# p must be a prime greater than n
n, r, p = 10, 2, 13
print("Value of nCr % p is", ncr(n, r, p))


C#




// A modular inverse based solution to
// compute nCr % p
using System;
 
class GFG {
 
    /* Iterative Function to calculate
    (x^y)%p in O(log y) */
    static int power(int x, int y, int p)
    {
 
        // Initialize result
        int res = 1;
 
        // Update x if it is more than or
        // equal to p
        x = x % p;
 
        while (y > 0) {
 
            // If y is odd, multiply x
            // with result
            if (y % 2 == 1)
                res = (res * x) % p;
 
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
 
        return res;
    }
 
    // Returns n^(-1) mod p
    static int modInverse(int n, int p)
    {
        return power(n, p - 2, p);
    }
 
    // Returns nCr % p using Fermat's
    // little theorem.
    static int nCrModPFermat(int n, int r,
                             int p)
    {
 
      if (n<r)
            return 0;
      // Base case
        if (r == 0)
            return 1;
 
        // Fill factorial array so that we
        // can find all factorial of r, n
        // and n-r
        int[] fac = new int[n + 1];
        fac[0] = 1;
 
        for (int i = 1; i <= n; i++)
            fac[i] = fac[i - 1] * i % p;
 
        return (fac[n] * modInverse(fac[r], p)
                % p * modInverse(fac[n - r], p)
                % p)
            % p;
    }
 
    // Driver program
    static void Main()
    {
 
        // p must be a prime greater than n.
        int n = 10, r = 11, p = 13;
        Console.Write("Value of nCr % p is "
                      + nCrModPFermat(n, r, p));
    }
}
 
// This code is contributed by Anuj_67


PHP




<?php
// A modular inverse
// based solution to
// compute nCr % p
 
// Iterative Function to
// calculate (x^y)%p
// in O(log y)
function power($x, $y, $p)
{
     
    // Initialize result
    $res = 1;
 
    // Update x if it
    // is more than or
    // equal to p
    $x = $x % $p;
 
    while ($y > 0)
    {
         
        // If y is odd,
        // multiply x
        // with result
        if ($y & 1)
            $res = ($res * $x) % $p;
 
        // y must be
        // even now
        // y = y/2
        $y = $y >> 1;
        $x = ($x * $x) % $p;
    }
    return $res;
}
 
// Returns n^(-1) mod p
function modInverse($n, $p)
{
    return power($n, $p - 2, $p);
}
 
// Returns nCr % p using
// Fermat's little
// theorem.
function nCrModPFermat($n, $r, $p)
{
     
    if ($n<$r)
          return 0;
      // Base case
    if ($r==0)
        return 1;
 
    // Fill factorial array so that we
    // can find all factorial of r, n
    // and n-r
    //$fac[$n+1];
    $fac[0] = 1;
    for ($i = 1; $i <= $n; $i++)
        $fac[$i] = $fac[$i - 1] *
                        $i % $p;
 
    return ($fac[$n] * modInverse($fac[$r], $p) % $p *
             modInverse($fac[$n - $r], $p) % $p) % $p;
}
 
    // Driver Code
    // p must be a prime
    // greater than n.
    $n = 10;
    $r = 2;
    $p = 13;
    echo "Value of nCr % p is ",
         nCrModPFermat($n, $r, $p);
         
// This code is contributed by Ajit.
?>


Javascript




<script>
 
    // A modular inverse based solution
    // to compute nCr % p
     
    /* Iterative Function to calculate
    (x^y)%p in O(log y) */
    function power(x, y, p)
    {
  
        // Initialize result
        let res = 1;
  
        // Update x if it is more than or
        // equal to p
        x = x % p;
  
        while (y > 0) {
  
            // If y is odd, multiply x
            // with result
            if (y % 2 == 1)
                res = (res * x) % p;
  
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
  
        return res;
    }
  
    // Returns n^(-1) mod p
    function modInverse(n, p)
    {
        return power(n, p - 2, p);
    }
  
    // Returns nCr % p using Fermat's
    // little theorem.
    function nCrModPFermat(n, r, p)
    {
  
      if (n<r)
      {
          return 0;
      }
         
      // Base case
      if (r == 0)
        return 1;
 
      // Fill factorial array so that we
      // can find all factorial of r, n
      // and n-r
      let fac = new Array(n + 1);
      fac[0] = 1;
 
      for (let i = 1; i <= n; i++)
        fac[i] = fac[i - 1] * i % p;
 
      return (fac[n] * modInverse(fac[r], p) % p *
              modInverse(fac[n - r], p) % p) % p;
    }
     
    // p must be a prime greater than n.
    let n = 10, r = 2, p = 13;
    document.write("Value of nCr % p is " +
                    nCrModPFermat(n, r, p));
 
</script>


Output

Value of nCr % p is 6

Time Complexity: O(n)
Auxiliary Space: O(n)

We can further improve it’s space complexity:

Instead of calculating factorial in a different array, we can directly multiply numbers with some cancellations.

We know the formula for  nCr 
nCr = fact(n) / (fact(r) x fact(n-r)) 
fact(n) = n * (n-1) * (n-2) * (n-3)* .... * 1;
fact(r) = r * (r-1) * (r-2) * ......... *1;
Because r is always less than n in nCr So all factors in fact(r) also come in fact(n),
hence we can cancell them.
And get the multiplication of rest elements of numerator and denominator(fact(n-r))
Note that rest elements of numerator will be n* (n-1) *(n-2) * .... (r+1).

We can also improve time complexity with the logic nCr is equal to nC(n-r). So whenever n-r is less than r compute nCn-r instead of nCr.

See the below implementation:

C++




// A modular inverse based solution to
// compute nCr % p
#include <bits/stdc++.h>
using namespace std;
 
/* Iterative Function to calculate (x^y)%p
in O(log y) */
unsigned long long power(unsigned long long x, int y, int p)
{
    unsigned long long res = 1; // Initialize result
 
    x = x % p; // Update x if it is more than or
    // equal to p
 
    while (y > 0) {
 
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Returns n^(-1) mod p
unsigned long long modInverse(unsigned long long n, int p)
{
    return power(n, p - 2, p);
}
unsigned long long mul(unsigned long long x,
                       unsigned long long y, int p)
{
    return x * 1ull * y % p;
}
unsigned long long divide(unsigned long long x,
                          unsigned long long y, int p)
{
    return mul(x, modInverse(y, p), p);
}
// Returns nCr % p using Fermat's little
// theorem.
unsigned long long nCrModPFermat(unsigned long long n,
                                 int r, int p)
{
    // If n<r, then nCr should return 0
    if (n < r)
        return 0;
    // Base case
    if (r == 0)
        return 1;
    // if n-r is less calculate nCn-r
    if (n - r < r)
        return nCrModPFermat(n, n - r, p);
 
    // Fill factorial array so that we
    // can find all factorial of r, n
    // and n-r
    unsigned long long res = 1;
    // keep multiplying numerator terms and dividing denominator terms in res
    for (int i = r; i >= 1; i--)
        res = divide(mul(res, n - i + 1, p), i, p);
    return res;
}
 
// Driver program
int main()
{
    // p must be a prime greater than n.
    int n = 10, r = 2, p = 13;
    cout << "Value of nCr % p is "
         << nCrModPFermat(n, r, p);
    return 0;
}
 
//Code and idea by Harsh Singh (hsnooob)


Java




import java.util.*;
 
public class Gfg {
 
  // Iterative Function to calculate (x^y)%p in O(log y)
  public static long power(long x, int y, int p) {
    long res = 1; // Initialize result
 
    x = x % p; // Update x if it is more than or equal to p
 
    while (y > 0) {
      // If y is odd, multiply x with result
      if ((y & 1) == 1)
        res = (res * x) % p;
 
      // y must be even now
      y = y >> 1; // y = y/2
      x = (x * x) % p;
    }
    return res;
  }
 
  // Returns n^(-1) mod p
  public static long modInverse(long n, int p) {
    return power(n, p - 2, p);
  }
 
  public static long mul(long x, long y, int p) {
    return x * 1L * y % p;
  }
 
  public static long divide(long x, long y, int p) {
    return mul(x, modInverse(y, p), p);
  }
 
  // Returns nCr % p using Fermat's little theorem.
  public static long nCrModPFermat(long n, long r, int p) {
    // If n<r, then nCr should return 0
    if (n < r)
      return 0;
 
    // Base case
    if (r == 0)
      return 1;
 
    // if n-r is less calculate nCn-r
    if (n - r < r)
      return nCrModPFermat(n, n - r, p);
 
    // Fill factorial array so that we can find all factorial of r, n and n-r
    long res = 1;
    // keep multiplying numerator terms and dividing denominator terms in res
    for (long i = r; i >= 1; i--)
      res = divide(mul(res, n - i + 1, p), i, p);
    return res;
  }
 
  // Driver program
  public static void main(String[] args) {
    // p must be a prime greater than n.
    int n = 10, r = 2, p = 13;
    System.out.println("Value of nCr % p is " + nCrModPFermat(n, r, p));
  }
}


Python3




def power(x, y, p):
    res = 1
    x = x % p
 
    while y > 0:
        if y & 1:
            res = (res * x) % p
        y = y >> 1
        x = (x * x) % p
    return res
 
def modInverse(n, p):
    return power(n, p - 2, p)
 
def mul(x, y, p):
    return (x * y) % p
 
def divide(x, y, p):
    return mul(x, modInverse(y, p), p)
 
def nCrModPFermat(n, r, p):
    if n < r:
        return 0
    if r == 0:
        return 1
    if n - r < r:
        return nCrModPFermat(n, n - r, p)
    res = 1
    for i in range(1, r + 1):
        res = divide(mul(res, n - i + 1, p), i, p)
    return res
 
n = 10
r = 2
p = 13
print("Value of nCr % p is", nCrModPFermat(n, r, p))


C#




using System;
 
class Program {
    // Iterative Function to calculate (x^y)%p in O(log y)
    static long Power(long x, int y, int p)
    {
        long res = 1; // Initialize result
 
        x = x % p; // Update x if it is more than or equal
                   // to p
 
        while (y > 0) {
            // If y is odd, multiply x with result
            if ((y & 1) == 1)
                res = (res * x) % p;
 
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
 
    // Returns n^(-1) mod p
    static long ModInverse(long n, int p)
    {
        return Power(n, p - 2, p);
    }
 
    static long Mul(long x, long y, int p)
    {
        return x * 1L * y % p;
    }
 
    static long Divide(long x, long y, int p)
    {
        return Mul(x, ModInverse(y, p), p);
    }
 
    // Returns nCr % p using Fermat's little theorem.
    static long NCrModPFermat(long n, long r, int p)
    {
        // If n<r, then nCr should return 0
        if (n < r)
            return 0;
 
        // Base case
        if (r == 0)
            return 1;
 
        // if n-r is less calculate nCn-r
        if (n - r < r)
            return NCrModPFermat(n, n - r, p);
 
        // Fill factorial array so that we can find all
        // factorial of r, n and n-r
        long res = 1;
        // keep multiplying numerator terms and dividing
        // denominator terms in res
        for (long i = r; i >= 1; i--)
            res = Divide(Mul(res, n - i + 1, p), i, p);
        return res;
    }
 
    static void Main(string[] args)
    {
        // p must be a prime greater than n.
        int n = 10, r = 2, p = 13;
        Console.WriteLine("Value of nCr % p is "
                          + NCrModPFermat(n, r, p));
    }
}


Javascript




// A modular inverse based solution to
// compute nCr % p
 
function power(x, y, p) {
  let res = 1; // Initialize result
 
  x = x % p; // Update x if it is more than or equal to p
 
  while (y > 0) {
    // If y is odd, multiply x with result
    if (y & 1) res = (res * x) % p;
 
    // y must be even now
    y = y >> 1; // y = y/2
    x = (x * x) % p;
  }
  return res;
}
 
// Returns n^(-1) mod p
function modInverse(n, p) {
  return power(n, p - 2, p);
}
 
function mul(x, y, p) {
  return (x * y) % p;
}
 
function divide(x, y, p) {
  return mul(x, modInverse(y, p), p);
}
 
// Returns nCr % p using Fermat's little theorem.
function nCrModPFermat(n, r, p) {
  // If n<r, then nCr should return 0
  if (n < r) return 0;
  // Base case
  if (r == 0) return 1;
  // if n-r is less calculate nCn-r
  if (n - r < r) return nCrModPFermat(n, n - r, p);
 
  // Fill factorial array so that we
  // can find all factorial of r, n
  // and n-r
  let res = 1;
  // keep multiplying numerator terms and dividing denominator terms in res
  for (let i = r; i >= 1; i--)
    res = divide(mul(res, n - i + 1, p), i, p);
  return res;
}
 
// Driver program
let n = 10,
  r = 2,
  p = 13;
console.log("Value of nCr % p is " + nCrModPFermat(n, r, p));


Output

Value of nCr % p is 6

Time Complexity: O(n)
Auxiliary Space: O(1)

Improvements: 
In competitive programming, we can pre-compute fac[] for a given upper limit so that we don’t have to compute it for every test case. We also can use unsigned long long int everywhere to avoid overflows.



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads