Open In App

Convert a Binary Tree to a Circular Doubly Link List

Improve
Improve
Like Article
Like
Save
Share
Report

Given a Binary Tree, convert it to a Circular Doubly Linked List (In-Place).  

  • The left and right pointers in nodes are to be used as previous and next pointers respectively in the converted Circular Linked List.
  • The order of nodes in the List must be the same as in Inorder for the given Binary Tree.
  • The first node of Inorder traversal must be the head node of the Circular List.

Examples:

tree to list

Recommended Practice

Convert a Binary Tree to a Circular Doubly Link List using Recursion:

The idea is to make a general-purpose function that concatenates two given circular doubly lists

Follow the steps below to solve the problem:

  • Recursively convert the left subtree to a circular DLL. Let the converted list be leftList.
  • Recursively convert the right subtree to a circular DLL. Let the converted list be rightList
  • Make a circular linked list of roots of the tree, and make the left and right root points to themselves. 
  • Concatenate leftList with the list of the single root node. 
  • Concatenate the list produced in the step above with rightList.

Note: The above approach traverses the tree in a Postorder fashion. We can traverse in an inorder fashion also. We can first concatenate left subtree and root, then recur for the right subtree and concatenate the result with left-root concatenation.

How do Concatenate two circular DLLs? 

  • Get the last node of the left list. Retrieving the last node is an O(1) operation since the prev pointer of the head points to the last node of the list.
  • Connect it with the first node of the right list
  • Get the last node of the second list
  • Connect it with the head of the list.

Below are implementations of the above idea:

C++




// C++ Program to convert a Binary Tree
// to a Circular Doubly Linked List
#include <iostream>
using namespace std;
  
// To represents a node of a Binary Tree
struct Node {
    struct Node *left, *right;
    int data;
};
  
// A function that appends rightList at the end
// of leftList.
Node* concatenate(Node* leftList, Node* rightList)
{
    // If either of the list is empty
    // then return the other list
    if (leftList == NULL)
        return rightList;
    if (rightList == NULL)
        return leftList;
  
    // Store the last Node of left List
    Node* leftLast = leftList->left;
  
    // Store the last Node of right List
    Node* rightLast = rightList->left;
  
    // Connect the last node of Left List
    // with the first Node of the right List
    leftLast->right = rightList;
    rightList->left = leftLast;
  
    // Left of first node points to
    // the last node in the list
    leftList->left = rightLast;
  
    // Right of last node refers to the first
    // node of the List
    rightLast->right = leftList;
  
    return leftList;
}
  
// Function converts a tree to a circular Linked List
// and then returns the head of the Linked List
Node* bTreeToCList(Node* root)
{
    if (root == NULL)
        return NULL;
  
    // Recursively convert left and right subtrees
    Node* left = bTreeToCList(root->left);
    Node* right = bTreeToCList(root->right);
  
    // Make a circular linked list of single node
    // (or root). To do so, make the right and
    // left pointers of this node point to itself
    root->left = root->right = root;
  
    // Step 1 (concatenate the left list with the list
    //         with single node, i.e., current node)
    // Step 2 (concatenate the returned list with the
    //         right List)
    return concatenate(concatenate(left, root), right);
}
  
// Display Circular Link List
void displayCList(Node* head)
{
    cout << "Circular Linked List is :\n";
    Node* itr = head;
    do {
        cout << itr->data << " ";
        itr = itr->right;
    } while (head != itr);
    cout << "\n";
}
  
// Create a new Node and return its address
Node* newNode(int data)
{
    Node* temp = new Node();
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
  
// Driver Program to test above function
int main()
{
    Node* root = newNode(10);
    root->left = newNode(12);
    root->right = newNode(15);
    root->left->left = newNode(25);
    root->left->right = newNode(30);
    root->right->left = newNode(36);
  
    Node* head = bTreeToCList(root);
    displayCList(head);
  
    return 0;
}
  
// This code is contributed by Aditya Kumar (adityakumar129)


C




// C Program to convert a Binary Tree
// to a Circular Doubly Linked List
#include <stdio.h>
#include <stdlib.h>
  
// To represents a node of a Binary Tree
typedef struct Node {
    struct Node *left, *right;
    int data;
} Node;
  
// A function that appends rightList at the end
// of leftList.
Node* concatenate(Node* leftList, Node* rightList)
{
    // If either of the list is empty
    // then return the other list
    if (leftList == NULL)
        return rightList;
    if (rightList == NULL)
        return leftList;
  
    // Store the last Node of left List
    Node* leftLast = leftList->left;
  
    // Store the last Node of right List
    Node* rightLast = rightList->left;
  
    // Connect the last node of Left List
    // with the first Node of the right List
    leftLast->right = rightList;
    rightList->left = leftLast;
  
    // Left of first node points to
    // the last node in the list
    leftList->left = rightLast;
  
    // Right of last node refers to the first
    // node of the List
    rightLast->right = leftList;
  
    return leftList;
}
  
// Function converts a tree to a circular Linked List
// and then returns the head of the Linked List
Node* bTreeToCList(Node* root)
{
    if (root == NULL)
        return NULL;
  
    // Recursively convert left and right subtrees
    Node* left = bTreeToCList(root->left);
    Node* right = bTreeToCList(root->right);
  
    // Make a circular linked list of single node
    // (or root). To do so, make the right and
    // left pointers of this node point to itself
    root->left = root->right = root;
  
    // Step 1 (concatenate the left list with the list
    //         with single node, i.e., current node)
    // Step 2 (concatenate the returned list with the
    //         right List)
    return concatenate(concatenate(left, root), right);
}
  
// Display Circular Link List
void displayCList(Node* head)
{
    printf("Circular Linked List is :\n");
    Node* itr = head;
    do {
        printf("%d ", itr->data);
        itr = itr->right;
    } while (head != itr);
    printf("\n");
}
  
// Create a new Node and return its address
Node* newNode(int data)
{
    Node* temp = (Node*)malloc(sizeof(Node));
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
  
// Driver Program to test above function
int main()
{
    Node* root = newNode(10);
    root->left = newNode(12);
    root->right = newNode(15);
    root->left->left = newNode(25);
    root->left->right = newNode(30);
    root->right->left = newNode(36);
  
    Node* head = bTreeToCList(root);
    displayCList(head);
  
    return 0;
}
  
// This code is contributed by Aditya Kumar (adityakumar129)


Java




// Java Program to convert a Binary Tree to a
// Circular Doubly Linked List
  
// Node class represents a Node of a Tree
class Node {
    int val;
    Node left, right;
  
    public Node(int val)
    {
        this.val = val;
        left = right = null;
    }
}
  
// A class to represent a tree
class Tree {
    Node root;
    public Tree() { root = null; }
  
    // concatenate both the lists and returns the head
    // of the List
    public Node concatenate(Node leftList, Node rightList)
    {
        // If either of the list is empty, then
        // return the other list
        if (leftList == null)
            return rightList;
        if (rightList == null)
            return leftList;
  
        // Store the last Node of left List
        Node leftLast = leftList.left;
  
        // Store the last Node of right List
        Node rightLast = rightList.left;
  
        // Connect the last node of Left List
        // with the first Node of the right List
        leftLast.right = rightList;
        rightList.left = leftLast;
  
        // left of first node refers to
        // the last node in the list
        leftList.left = rightLast;
  
        // Right of last node refers to the first
        // node of the List
        rightLast.right = leftList;
  
        // Return the Head of the List
        return leftList;
    }
  
    // Method converts a tree to a circular
    // Link List and then returns the head
    // of the Link List
    public Node bTreeToCList(Node root)
    {
        if (root == null)
            return null;
  
        // Recursively convert left and right subtrees
        Node left = bTreeToCList(root.left);
        Node right = bTreeToCList(root.right);
  
        // Make a circular linked list of single node
        // (or root). To do so, make the right and
        // left pointers of this node point to itself
        root.left = root.right = root;
  
        // Step 1 (concatenate the left list with the list
        //         with single node, i.e., current node)
        // Step 2 (concatenate the returned list with the
        //         right List)
        return concatenate(concatenate(left, root), right);
    }
  
    // Display Circular Link List
    public void display(Node head)
    {
        System.out.println("Circular Linked List is :");
        Node itr = head;
        do {
            System.out.print(itr.val + " ");
            itr = itr.right;
        } while (itr != head);
        System.out.println();
    }
}
  
// Driver Code
class Main {
    public static void main(String args[])
    {
        // Build the tree
        Tree tree = new Tree();
        tree.root = new Node(10);
        tree.root.left = new Node(12);
        tree.root.right = new Node(15);
        tree.root.left.left = new Node(25);
        tree.root.left.right = new Node(30);
        tree.root.right.left = new Node(36);
  
        // head refers to the head of the Link List
        Node head = tree.bTreeToCList(tree.root);
  
        // Display the Circular LinkedList
        tree.display(head);
    }
}


Python3




# Python3 Program to convert a Binary
# Tree to a Circular Doubly Linked List
  
  
class newNode:
    def __init__(self, data):
        self.data = data
        self.left = self.right = None
  
# A function that appends rightList
# at the end of leftList.
  
  
def concatenate(leftList, rightList):
  
    # If either of the list is empty
    # then return the other list
    if (leftList == None):
        return rightList
    if (rightList == None):
        return leftList
  
    # Store the last Node of left List
    leftLast = leftList.left
  
    # Store the last Node of right List
    rightLast = rightList.left
  
    # Connect the last node of Left List
    # with the first Node of the right List
    leftLast.right = rightList
    rightList.left = leftLast
  
    # Left of first node points to
    # the last node in the list
    leftList.left = rightLast
  
    # Right of last node refers to
    # the first node of the List
    rightLast.right = leftList
  
    return leftList
  
# Function converts a tree to a circular
# Linked List and then returns the head
# of the Linked List
  
  
def bTreeToCList(root):
    if (root == None):
        return None
  
    # Recursively convert left and
    # right subtrees
    left = bTreeToCList(root.left)
    right = bTreeToCList(root.right)
  
    # Make a circular linked list of single
    # node (or root). To do so, make the
    # right and left pointers of this node
    # point to itself
    root.left = root.right = root
  
    # Step 1 (concatenate the left list
    #          with the list with single
    #         node, i.e., current node)
    # Step 2 (concatenate the returned list
    #          with the right List)
    return concatenate(concatenate(left,
                                   root), right)
  
# Display Circular Link List
  
  
def displayCList(head):
    print("Circular Linked List is :")
    itr = head
    first = 1
    while (head != itr or first):
        print(itr.data, end=" ")
        itr = itr.right
        first = 0
    print()
  
  
# Driver Code
if __name__ == '__main__':
    root = newNode(10)
    root.left = newNode(12)
    root.right = newNode(15)
    root.left.left = newNode(25)
    root.left.right = newNode(30)
    root.right.left = newNode(36)
  
    head = bTreeToCList(root)
    displayCList(head)
  
# This code is contributed by PranchalK


C#




// C# Program to convert a Binary Tree
// to a Circular Doubly Linked List
using System;
  
// Node class represents a Node of a Tree
public class Node {
    public int val;
    public Node left, right;
  
    public Node(int val)
    {
        this.val = val;
        left = right = null;
    }
}
  
// A class to represent a tree
public class Tree {
    internal Node root;
    public Tree() { root = null; }
  
    // concatenate both the lists
    // and returns the head of the List
    public virtual Node concatenate(Node leftList,
                                    Node rightList)
    {
        // If either of the list is empty,
        // then return the other list
        if (leftList == null) {
            return rightList;
        }
        if (rightList == null) {
            return leftList;
        }
  
        // Store the last Node of left List
        Node leftLast = leftList.left;
  
        // Store the last Node of right List
        Node rightLast = rightList.left;
  
        // Connect the last node of Left List
        // with the first Node of the right List
        leftLast.right = rightList;
        rightList.left = leftLast;
  
        // left of first node refers to
        // the last node in the list
        leftList.left = rightLast;
  
        // Right of last node refers to
        // the first node of the List
        rightLast.right = leftList;
  
        // Return the Head of the List
        return leftList;
    }
  
    // Method converts a tree to a circular
    // Link List and then returns the head
    // of the Link List
    public virtual Node bTreeToCList(Node root)
    {
        if (root == null) {
            return null;
        }
  
        // Recursively convert left
        // and right subtrees
        Node left = bTreeToCList(root.left);
        Node right = bTreeToCList(root.right);
  
        // Make a circular linked list of single
        // node (or root). To do so, make the
        // right and left pointers of this node
        // point to itself
        root.left = root.right = root;
  
        // Step 1 (concatenate the left list with
        //          the list with single node,
        //        i.e., current node)
        // Step 2 (concatenate the returned list
        //           with the right List)
        return concatenate(concatenate(left, root), right);
    }
  
    // Display Circular Link List
    public virtual void display(Node head)
    {
        Console.WriteLine("Circular Linked List is :");
        Node itr = head;
        do {
            Console.Write(itr.val + " ");
            itr = itr.right;
        } while (itr != head);
        Console.WriteLine();
    }
}
  
// Driver Code
public class GFG {
    public static void Main(string[] args)
    {
        // Build the tree
        Tree tree = new Tree();
        tree.root = new Node(10);
        tree.root.left = new Node(12);
        tree.root.right = new Node(15);
        tree.root.left.left = new Node(25);
        tree.root.left.right = new Node(30);
        tree.root.right.left = new Node(36);
  
        // head refers to the head of the Link List
        Node head = tree.bTreeToCList(tree.root);
  
        // Display the Circular LinkedList
        tree.display(head);
    }
}
  
// This code is contributed by Shrikant13


Javascript




<script>
// javascript Program to convert a Binary Tree to a
// Circular Doubly Linked List
  
// Node class represents a Node of a Tree
class Node {
    constructor(val) {
        this.val = val;
        this.left = null;
        this.right = null;
    }
}
  
// A class to represent a 
  
        var root = null;
  
  
    // concatenate both the lists and returns the head
    // of the List
     function concatenate(leftList,  rightList) {
        // If either of the list is empty, then
        // return the other list
        if (leftList == null)
            return rightList;
        if (rightList == null)
            return leftList;
  
        // Store the last Node of left List
        var leftLast = leftList.left;
  
        // Store the last Node of right List
        var rightLast = rightList.left;
  
        // Connect the last node of Left List
        // with the first Node of the right List
        leftLast.right = rightList;
        rightList.left = leftLast;
  
        // left of first node refers to
        // the last node in the list
        leftList.left = rightLast;
  
        // Right of last node refers to the first
        // node of the List
        rightLast.right = leftList;
  
        // Return the Head of the List
        return leftList;
    }
  
    // Method converts a  to a circular
    // Link List and then returns the head
    // of the Link List
     function bTreeToCList(root) {
        if (root == null)
            return null;
  
        // Recursively convert left and right subtrees
        var left = bTreeToCList(root.left);
        var right = bTreeToCList(root.right);
  
        // Make a circular linked list of single node
        // (or root). To do so, make the right and
        // left pointers of this node point to itself
        root.left = root.right = root;
  
        // Step 1 (concatenate the left list with the list
        // with single node, i.e., current node)
        // Step 2 (concatenate the returned list with the
        // right List)
        return concatenate(concatenate(left, root), right);
    }
  
    // Display Circular Link List
     function display(head) {
        document.write("Circular Linked List is :<br/>");
        var itr = head;
        do {
            document.write(itr.val + " ");
            itr = itr.right;
        } while (itr != head);
        document.write();
    }
  
  
       // Driver Code
  
      
        // Build the 
        root = new Node(10);
        root.left = new Node(12);
        root.right = new Node(15);
        root.left.left = new Node(25);
        root.left.right = new Node(30);
        root.right.left = new Node(36);
  
        // head refers to the head of the Link List
        var head = bTreeToCList(root);
  
        // Display the Circular LinkedList
        display(head);
  
// This code contributed by umadevi9616
</script>


Output

Circular Linked List is :
25 12 30 10 36 15 

Time Complexity: O(N), As every node is visited at most once.
Auxiliary space: O(log N), The extra space is used in the recursion call stack which can grow up to a maximum size of logN as it is a binary tree.

Convert a Binary Tree to a Circular Doubly Link List by Inorder Traversal:

The idea is to do in-order traversal of the binary tree. While doing inorder traversal, keep track of the previously visited node in a variable, say prev. For every visited node, make it the next of the prev and set previous of this node as prev.

Follow the steps below to solve the problem:

Below is the implementation of the above approach.

C++




// A C++ program for in-place conversion of Binary Tree to
// CDLL
#include <iostream>
using namespace std;
  
/* A binary tree node has - data , left and right pointers
 */
struct Node {
    int data;
    Node* left;
    Node* right;
};
// A utility function that converts given binary tree to
// a doubly linked list
// root --> the root of the binary tree
// head --> head of the created doubly linked list
Node* BTree2DoublyLinkedList(Node* root, Node** head)
{
    // Base case
    if (root == NULL)
        return root;
  
    // Initialize previously visited node as NULL. This is
    // static so that the same value is accessible in all
    // recursive calls
    static Node* prev = NULL;
  
    // Recursively convert left subtree
    BTree2DoublyLinkedList(root->left, head);
  
    // Now convert this node
    if (prev == NULL)
        *head = root;
    else {
        root->left = prev;
        prev->right = root;
    }
    prev = root;
  
    // Finally convert right subtree
    BTree2DoublyLinkedList(root->right, head);
    return prev;
}
// A simple recursive function to convert a given Binary
// tree to Circular Doubly Linked List using a utility
// function root --> Root of Binary Tree tail --> Pointer to
// tail node of created circular doubly linked list
Node* BTree2CircularDoublyLinkedList(Node* root)
{
    Node* head = NULL;
    Node* tail = BTree2DoublyLinkedList(root, &head);
    // make the changes to convert a DLL to CDLL
    tail->right = head;
    head->left = tail;
    // return the head of the created CDLL
    return head;
}
  
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
Node* newNode(int data)
{
    Node* new_node = new Node;
    new_node->data = data;
    new_node->left = new_node->right = NULL;
    return (new_node);
}
  
/* Function to print nodes in a given circular doubly linked
 * list */
void printList(Node* head)
{
    if (head == NULL)
        return;
    Node* ptr = head;
    do {
        cout << ptr->data << " ";
        ptr = ptr->right;
    } while (ptr != head);
}
  
/* Driver program to test above functions*/
int main()
{
    // Let us create the tree shown in above diagram
    Node* root = newNode(10);
    root->left = newNode(12);
    root->right = newNode(15);
    root->left->left = newNode(25);
    root->left->right = newNode(30);
    root->right->left = newNode(36);
  
    // Convert to DLL
    Node* head = BTree2CircularDoublyLinkedList(root);
  
    // Print the converted list
    printList(head);
  
    return 0;
}
  
// This code was contributed by Abhijeet
// Kumar(abhijeet19403)


Java




// A Java program for in-place conversion of Binary Tree to
// CDLL
  
// A binary tree node has - data, left pointer and right
// pointer
class Node {
    int data;
    Node left, right;
    public Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
  
class BinaryTree {
    Node root;
    // head --> Pointer to head node of created doubly
    // linked list
    Node head;
  
    // Initialize previously visited node as NULL. This is
    // static so that the same value is accessible in all
    // recursive calls
    static Node prev = null;
  
    // A simple utility recursive function to convert a
    // given Binary tree to Doubly Linked List root --> Root
    // of Binary Tree
    void BTree2DoublyLinkedList(Node root)
    {
        // Base case
        if (root == null)
            return;
  
        // Recursively convert left subtree
        BTree2DoublyLinkedList(root.left);
  
        // Now convert this node
        if (prev == null)
            head = root;
        else {
            root.left = prev;
            prev.right = root;
        }
        prev = root;
  
        // Finally convert right subtree
        BTree2DoublyLinkedList(root.right);
    }
    // A simple function to convert a given binary tree to
    // Circular doubly linked list
    // using a utility function
    void BTree2CircularDoublyLinkedList(Node root)
    {
        BTree2DoublyLinkedList(root);
        // make the changes to convert a DLL to CDLL
        prev.right = head;
        head.left = prev;
    }
  
    /* Function to print nodes in a given doubly linked list
     */
    void printList(Node node)
    {
        if (node == null)
            return;
        Node curr = node;
        do {
            System.out.print(curr.data + " ");
            curr = curr.right;
        } while (curr != node);
    }
  
    // Driver program to test above functions
    public static void main(String[] args)
    {
        // Let us create the tree as shown in above diagram
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(12);
        tree.root.right = new Node(15);
        tree.root.left.left = new Node(25);
        tree.root.left.right = new Node(30);
        tree.root.right.left = new Node(36);
  
        // convert to DLL
        tree.BTree2CircularDoublyLinkedList(tree.root);
  
        // Print the converted List
        tree.printList(tree.head);
    }
}
// This code has been contributed by Abhijeet
// Kumar(abhijeet19403)


Python




# A python program for in-place conversion of Binary Tree to DLL
# A binary tree node has data, left pointers and right pointers
class Node:
    def __init__(self, val):
        self.data = val
        self.left = None
        self.right = None
  
# head --> Pointer to head node of created doubly linked list
head = None
  
# Initialize previously visited node as NULL. This is
# so that the same value is accessible in all recursive
# calls
prev = None
  
# A simple recursive function to convert a given Binary tree
# to Doubly Linked List
# root --> Root of Binary Tree
def BinaryTree2DoubleLinkedList(root):
  
    # Base case
    if (root == None):
        return
  
    # Recursively convert left subtree
    BinaryTree2DoubleLinkedList(root.left)
  
    # Now convert this node
    global prev, head
    if (prev == None):
        head = root
    else:
        root.left = prev
        prev.right = root
    prev = root
  
    # Finally convert right subtree
    BinaryTree2DoubleLinkedList(root.right)
  
# Function to print nodes in a given doubly linked list
  
  
def printList(node):
    while (node != None):
        print(node.data)
        node = node.right
  
  
# Driver program to test above functions
# Let us create the tree as shown in above diagram
root = Node(10)
root.left = Node(12)
root.right = Node(15)
root.left.left = Node(25)
root.left.right = Node(30)
root.right.left = Node(36)
  
# convert to DLL
BinaryTree2DoubleLinkedList(root)
  
# Print the converted List
printList(head)
  
# This code is contributed by adityamaharshi21.


C#




// A C# program for in-place conversion of Binary Tree to
// CDLL
  
using System;
  
public class Node {
    public int data;
    public Node left, right;
    public Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
  
public class BinaryTree {
  
    Node root;
    // head --> Pointer to head node of created doubly
    // linked list
    Node head;
  
    // Initialize previously visited node as NULL. This is
    // static so that the same value is accessible in all
    // recursive calls
    static Node prev = null;
  
    // A simple utility recursive function to convert a
    // given Binary tree to Doubly Linked List root --> Root
    // of Binary Tree
    void BTree2DoublyLinkedList(Node root)
    {
        // Base case
        if (root == null)
            return;
  
        // Recursively convert left subtree
        BTree2DoublyLinkedList(root.left);
  
        // Now convert this node
        if (prev == null)
            head = root;
        else {
            root.left = prev;
            prev.right = root;
        }
        prev = root;
  
        // Finally convert right subtree
        BTree2DoublyLinkedList(root.right);
    }
    // A simple function to convert a given binary tree to
    // Circular doubly linked list
    // using a utility function
    void BTree2CircularDoublyLinkedList(Node root)
    {
        BTree2DoublyLinkedList(root);
        // make the changes to convert a DLL to CDLL
        prev.right = head;
        head.left = prev;
    }
  
    /* Function to print nodes in a given doubly linked list
     */
    void printList(Node node)
    {
        if (node == null)
            return;
        Node curr = node;
        do {
            Console.Write(curr.data + " ");
            curr = curr.right;
        } while (curr != node);
    }
  
    static public void Main()
    {
  
        // Let us create the tree as shown in above diagram
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(12);
        tree.root.right = new Node(15);
        tree.root.left.left = new Node(25);
        tree.root.left.right = new Node(30);
        tree.root.right.left = new Node(36);
  
        // convert to DLL
        tree.BTree2CircularDoublyLinkedList(tree.root);
  
        // Print the converted List
        tree.printList(tree.head);
    }
}
  
// This code is contributed by lokesh(lokeshmvs21).


Javascript




// A javascript program for in-place conversion of Binary Tree to DLL
// A binary tree node has data, left pointers and right pointers
class Node {
    constructor(val) {
        this.data = val;
        this.left = null;
        this.right = null;
    }
}
var root;
  
// head --> Pointer to head node of created doubly linked list
var head;
  
// Initialize previously visited node as NULL. This is
// so that the same value is accessible in all recursive
// calls
var prev = null;
  
// A simple recursive function to convert a given Binary tree
// to Doubly Linked List
// root --> Root of Binary Tree
function BinaryTree2DoubleLinkedList(root)
{
  
    // Base case
    if (root == null)
        return;
          
    // Recursively convert left subtree
    BinaryTree2DoubleLinkedList(root.left);
      
    // Now convert this node
    if (prev == null)
        head = root;
    else {
        root.left = prev;
        prev.right = root;
    }
    prev = root;
      
    // Finally convert right subtree
    BinaryTree2DoubleLinkedList(root.right);
}
  
/* Function to print nodes in a given doubly linked list */
function printList(node) {
    while (node != null) {
        console.log(node.data + " ");
        node = node.right;
    }
}
  
// Driver program to test above functions
// Let us create the tree as shown in above diagram
root = new Node(10);
root.left = new Node(12);
root.right = new Node(15);
root.left.left = new Node(25);
root.left.right = new Node(30);
root.right.left = new Node(36);
  
// convert to DLL
BinaryTree2DoubleLinkedList(root);
  
// Print the converted List
printList(head);
  
// This code is contributed by ishankhandelwals.


Output

25 12 30 10 36 15 

Time Complexity: O(N), As every node is visited at most once.
Auxiliary space: O(log N), The extra space is used in the recursive function call stack which can grow upto a maximum size of logN.

This approach was contributed by Abhijeet Kumar



Last Updated : 10 Jan, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads