Open In App

Gamma Function

Last Updated : 16 Jun, 2020
Improve
Improve
Like Article
Like
Save
Share
Report
Gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. Gamma function denoted by \Gamma\left (p \right) is defined as:  \Gamma\left(p \right) = \int_{0}^{\infty}e^{-t} t^{p-1} dt where p>0. Gamma function is also known as Euler’s integral of second kind. Integrating Gamma function by parts we get, \Gamma\left (p+1 \right) = \int_{0}^{\infty}e^{-t} t^{p} dt =-e^{-t} t^p \Biggr |_{0}^{\infty}+p\int_{0}^{\infty}e^{-t} t^{p-1} dt =0+p\Gamma\left (p \right) Thus \Gamma\left (p+1 \right) = p\Gamma\left (p \right) Some standard results:
  1. \Gamma\left (1/2 \right) = \sqrt \pi We know that \Gamma\left(1/2 \right) = \int_{0}^{\infty}t^{-\frac{1}{2}}e^{-t} dt Put t=u^2 Thus \Gamma\left(1/2 \right) = 2\int_{0}^{\infty}e^{{-u^2}}du \Gamma\left(1/2 \right) .\Gamma\left(p \right) = (2\int_{0}^{\infty}e^{{-u^2}}du)(2\int_{0}^{\infty}e^{{-u^2}}du) =4\int_{0}^{\infty} \int_{0}^{\infty}e^{-{u^2 + v^2}} du dv Now changing to polar coordinates by using u = r cosθ and v = r sinθ Thus {\Gamma\left(1/2 \right)}^2 = 4\int_{\theta=0}^{\pi/2}\int_{r=0}^{\infty}e^{-{r^2}} dr d\theta =4\int_{0}^{\pi/2} -\frac{1}{2}e^{-r^2}\Biggr|_{r=0}^{\infty} =2\int_{0}^{\pi/2}d\theta =  2.\theta \Biggr|_{0}^{\pi/2}=\pi Hence \Gamma\left (1/2 \right) = \sqrt \pi

  2. \Gamma\left(n+1 \right) = (m+1)^{n+1}(-1)^n \int_{0}^{1}x^m (ln x)^n dx Where n is a positive integer and m>-1 Put x=e^-y such that dx=-e-ydy=-x dy \int_{0}^{1}x^m(ln x)^n dx= \int_{0}^{\infty}e^{-my} . (-y)^n e^{-y} dy (-1)^n \int_{0}^{\infty} y^n . e^{-(m+1)y} dy Put (m+1)y = u =(-1)^n \int_{0}^{\infty}\frac{u^n}{(m+1)^n}.e^{-u} .\frac{du}{m+1} =\frac{(-1)^n}{(m+1)^n+1}\int_{0}^{\infty}e^{-u} .u^n du = \frac{(-1)^n}{(m+1)^{n+1}}.\Gamma\left(n+1\right)

Example-1: Compute \Gamma\left(4.5\right). Explanation : Using \Gamma\left(p+1\right)=p\Gamma\left(p\right) \Gamma\left(4.5\right)=\Gamma\left(3.5+1 \right)=3.5\Gamma\left(3.5\right) =(3.5)(2.5)\Gamma\left(2.5\right) =(3.5)(2.5)(1.5)\Gamma\left(1.5\right) =(3.5)(2.5)(1.5)(0.5)\Gamma\left(0.5\right) We know \Gamma\left(0.5\right)=\sqrt\pi Thus \Gamma\left(4.5\right)=6.5625\sqrt\pi
Example-2: Evaluate I=\int_{0}^{\infty}x^4 e^-{x^4} dx Explanation : Put x4 = t, 4x3dx = dt, dx = ¼ t-3/4 dt I=\int_{0}^{\infty}t.e^{-t} \frac{t^{-3/4}}{4}dt = \frac{1}{4}\int_{0}^{\infty}e^{-t} t^{3/4} dt = \frac{1}{4}\Gamma\left(1+\frac{1}{4}\right) = \frac{1}{4}\Gamma\left(\frac{5}{4}\right)

Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads